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rylating agents. The dimer (pyrophosphate) was excluded 
as the intermediate in question by its inability to phosphor-
ylate 3 under these conditions. 
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An acyl phosphate was selected as a suitable polymer-
bound metaphosphate precursor. This choice was based on 
the work of Jencks,3 who showed that the decomposition of 
acyl phosphates in media of low water or high salt concen­
trations produces pyrophosphate (i.e., trapping of meta­
phosphate by phosphate). A polymer-bound acyl phosphate 
linkage was therefore likely to generate metaphosphate 
cleanly in the aprotic medium of the polystyrene matrix. 
The precursor was easily prepared, although in low (10-
20%) overall yield, by the reactions of Scheme I. 

The polymer-bound benzoic acid4 (ir 1720, 1670 c m - 1 ) 
was converted in large part to the anhydride (ir 1785, 1725 
cm - 1 ) with carbodiimide, then to the radioactive acyl phos­
phate 2 (ir 1725, 1230 cm - 1 ) with tetramethylammonium 
[32P] phosphate in aqueous dioxane. That the phosphate of 
2 was covalently bound to rather than adsorbed on the resin 
was demonstrated by its failure to exchange with unlabeled 
phosphate in solution. The trapping agent used was the 
polymer-bound glycine 3 (Scheme II), prepared by estab­
lished procedures of Merrifield peptide synthesis.5 

When the polymers 2 and 3 were suspended in dioxane at 
80°, phosphate transfer between the two polymers was de­
tected generating 4 (ir 1380 cm"1) . Radioactivity assays in­
dicated that the half-life of 2 is approximately 27 hr under 
these conditions and 70% of the released phosphate ap­
peared on 4 while the remaining activity appeared in solu­
tion as phosphate. Saponification of 4 gave glycine /V-phos-
phate, 5, identical with an authentic sample, and isotope 
dilution established that 90% of the radioactivity of 4 ap­
peared as 5. Since direct reactions between the two resin 
bead surfaces have been shown to be negligible in related 
cases,6 the presence of a free monophosphorylating agent in 
the solution between the two solid phases is established. 

These results are consistent with the postulation of mono-
meric metaphosphate as the intermediate, but its higher oli­
gomers, formed by disproportionation reactions within 2, 
remain viable alternative possibilities as the actual phospho-

Does the Photochemical Bicyclopropenyl 
Rearrangement Involve a Prismane Intermediate?1 

Sir.-

In his pioneering work on both thermal and photochemi­
cal versions of the bicyclopropenyl —• benzene rearrange­
ment, Breslow suggested mechanism 1 with a prismane as 
the key intermediate to account for the observed ortho-para 
scrambling of x,y-substituents in the process of aromatiza-
tion.2 While we have dealt with the thermal (and transition 
metal catalyzed) case in recent papers3-5 we have now 
turned to an investigation of the photochemical rearrange­
ment whose mechanism has remained unchallenged so far.6 

In order to facilitate product analysis by NMR, we modi-
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fied Breslow's original compound I2 by introducing a meth­
yl group at one of the bridgehead carbon atoms.7 

Our recent3-5 discovery of the Ag'-catalyzed bicyclopro­
penyl —* Dewar benzene rearrangement now provides the 
basis for a crucial test of mechanism 1 (see Scheme I); the 
supposed prismane intermediate 3 in the photolysis of 2 can 
also be independently reached via the conventional [TTS

2 + 
TS

2 ] photocyclization of 9.4 As the further fate of 3 should 
be independent of its mode of generation, one expects the 
same product distribution in the photolysis of both 2 and 9. 
This, however, proved to be not even qualitatively so. 

Direct irradiation of 2 at 254 nm in benzene (Graentzel 
reactor 400, 600 W, substrate concentration 10 - 3 mol/L, ir­
radiation time 5 hr) cleanly yielded benzene derivatives 5 
and 6 in a 1:2 ratio. No 8 could be detected. Product com­
position was established by VPC separation8 and identifica­
tion of the individual components by comparison with au­
thentic samples.9 We thus observe ortho-meta scrambling 
of bicyclopropenyl bridgehead substituents in the process of 
aromatization!12 This result strongly contrasts with Bres­
low's observation of ortho-para scrambling in photolysis of 
I ' 3 and is clearly inconsistent with (eq 1) as there is no set 
of prismane ^ Dewar benzene interconversions capable of 
this scrambling pattern. However, a prismane intermediate, 
3, can still not be ruled out in this process as there is the 
possibility of vibrationally excited 3 rearranging to 5 and 6 
via the sequence 3 —• 4 —• 7. This di-ir-methane-like rear­
rangement is well documented for hexamethylprismane.14 

If this explanation holds, then generation of 3 via 9 should 
also yield 5 and 6. 

However, when the experimental test was made, only 6 

and 8 were formed but significantly no 5! (Reaction condi­
tions and product analysis as above.) That is: prismane 3 1 5 

does indeed behave according to eq 1 (ortho-para scram­
bling involving 9 and 10, see Scheme I) but it cannot be an 
intermediate in the photolysis of 2. Obviously there must 
exist a hitherto unrecognized pathway for photochemical 
bicyclopropenyl —*• benzene rearrangements. In the accom­
panying paper16 we report on observations which may be 
relevant in this context. 
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The Bicyclopropenyl Cope Rearrangement1'2 

Sir: 

So far there have been no reports of Cope rearrange­
ments involving cyclopropene moieties. In this communica­
tion we wish to report the first examples, both photochemi­
cal and thermal, of bicyclopropenyl -* bicyclopropenyl 
rearrangements which, apart from adding new mechanistic 
and structural facets to the Cope rearrangement, also allow 
some insight into bicyclopropenyl -* benzene rearrange­
ment pathways. 

Direct 320-nm irradiation of la3 (see Scheme I) in 3:1 
C H 3 O H - C 6 H 6 (Graentzel reactor 400, 600 W, substrate 
concentration ~ 1 0 - 3 mol/1., irradiation time 7 hr) gave two 
new products, 2 (95%) and 3 (5%), which after total conver­
sion of la could be separated by fractional crystallization. 
The structure of 3 (mp 230°) follows from spectral compar­
ison with an authentic sample.4 The structural assignment 
of 2 (mp 173°) as a bicyclopropenyl isomeric with la is 
based on the following data: ir (KBr) 1845 cm - 1 (v 
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> C = C < ) ; uv (CH2Cl2) Xmax 270 nm (e 23,600); N M R 
(CDCl3) T 7.58 (6 H, s); MS 410 (M + ) , 205. 

Ir and UV characteristics of 2 are completely analogous 
to the spectra of bicyclopropenyl 4 synthesized by Breslow 
via reductive coupling of the ethyldiphenylcyclopropenium 
ion.5 

2 is photostable under 320-nm irradiation because the 
transformation la -*• 2 is connected with a pronounced blue 
shift in the longest wavelength absorption (331 —• 270 nm). 

Similarly, under the same irradiation conditions, photoly­
sis of lb gave a mixture of 5 (65%), 6 (30%), and 7 (5%).2 5 
was isolated by low-temperature fractional crystallization 
from ether and had the following: mp 128-130°; ir (KBr) 
1845, 1755 cm"1 (v > C = C < ) ; uv (CH2Cl2) Xmax 269 nm 
(e 21,400); N M R (CDCl3) r 7.58 (3 H, s); MS 396 (M + ) , 
205, 191. Typically, the two cylopropene > C = C < absorp­
tions in the ir spectrum of 5 reflect the different substitution 
patterns of the two double bonds. Like 2, 5 is fairly photos­
table at 320 nm (and for the same reasons). 

While the interconversions la —• 2 and lb —*• 5 constitute 
the first examples of photochemically induced Cope rear­
rangements in the bicyclopropenyl series, the thermal coun-
terpiece was discovered in the thermolysis of 2 and 5 (see 
Scheme I). 

It was found that both 2 and 5 under rather mild condi­
tions were reconverted exclusively6 to the starting bicyclo­
propenyl systems, this reaction being accompanied by for­
mation of benzene derivatives (2 T I / 2

1 5 0 ° (o-dichloroben-
zene) 15 min with product composition, la (50%), 3 (50%); 
5 T\/280° (benzene) 30 min with product composition, 1 
(85%), 6 (10%), 7 (5%). 

The driving force of these thermal Cope rearrangements 
is probably provided by restoration of conjugation between 
the phenyl substituents. Evidently the photo-Cope rear­
rangements furnish the more endothermic of the two equi­
librium partners—a feature which it shares with some of 
the few known photo-Cope rearrangements in the open-
chain series.7 This fact allows the conclusion8 that in all 
probability 2 and 5 are formed in a true photoreaction and 
not in a hot ground state reaction. 

Our observations immediately provoke some mechanistic 
comments. (1) As concerns stereochemistry our results 
strongly suggest that both 2 and 5 arise via a chair transi­
tion state (and hence in the case of 2 should possess d,l 
rather than mesoconfiguration). This follows from the ob­
served mutually stereospecific l a — 2 ( lb =̂5 5) interrela­
tionships which imply that either both thermal and photo­
chemical Cope rearrangements proceed via a boat or both 
via a chair transition state.9 As it is totally unreasonable in 
view of the rotational flexibility and the mild reaction con­
ditions that the thermal Cope rearrangement should exclu­
sively proceed via a boat transition state, the above conclu­
sion concerning the photochemical case follows. (2) Pericy-
clic vs. two-step process. In view of the continuing discus­
sion of whether open-chain Cope rearrangements proceed 
as a pericyclic or as a two-step process,10 we wish to point 
out that a two-step process in the case of 9 should be inher­
ently more favorable. This arises because the introduction 
of a single bond between the two cyclopropene moieties to 
yield the anr/-l,4-tricyclohexylene (biradicaloid10) interme­
diate 10 is connected with some 25 kcal relief of total strain 
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